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Abstract

Given thesis deals with the problematic of time series analysis and forecasting. The aim

of thesis is to survey an existing time series forecasting methods, including necessary data

preprocessing steps. There are selected three promising forecasting methods, including

ARIMA method, artificial neural networks method and double exponential smoothing

method.

The main task of the thesis, is to perform data analysis of provided data and to develope

the individual forecasting models.

At the end of the thesis, there are results summary and further improvements are dis-

cussed.

Abstrakt

Diplomová práce se věnuje problematice analýzy a prognózováni časových řad. Ćılem

práce je prozkoumat existuj́ıćı metody prognózováni časových řad, včetně potřebných

krok̊u předzpracováńı dat. Jsou vybrané tři slibné metody prognózováni, včetně ARIMA,

metody prognózováni pomoci Neuronových śıti a metody dvojitého exponenciálńıho vy-

rovnáńı.

Dále je v práci provedena analýza nabodnutých dat a jsou zkonstruovaný jednotlivé

modely prognózováni.

V závěru práce je provedené zhodnoceni výsledku a jsou uvedené perspektivy pro daľśı

vylepšeni kvality predikce.
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Chapter 1

Introduction

The word ”prediction” originates from a Latin statement ”praedicere”, which was orig-

inally denoted by meanings ”to say beforehand” or ”to mention in advance”. Today,

”prediction” is usually referred to some kind of message or opinion about an event that

is expected to happen in future. Inside the more formal science context, the process of

making predictions about future by using scientific methods is usually denoted by term

”forecasting”. Processes that are usually required to be forecasted, are the most often

stored in a so called time series format. [1]

Time series is a common mathematical expression that can be frequently observed in

various texts about statistics, signal processing or econometrics. Every day, newspapers

contain business sections, which report daily stock prices, foreign currency exchange

rates or monthly rates of unemployment. Meteorology records usually consists of hourly

wind speeds, daily maximum and minimum temperatures or annual rainfall. Geophysics

are continuously observing processes like shaking or trembling of the earth, in order to

predict possibly impending earthquakes. All these and certainly many other examples

could be mentioned to describe the role of time series in our society. [2]

1.1 Aims of the Thesis

Today, there is plenty of various forecasting methods and each of them requires the

corresponding conditions and proper data preprocessing. Performing a research in the

given problematic, it can be observed, that the autoregressive methods and exponential

smoothing belong to the most frequently used forecasting methods. Additionally, an

Artificial intelligence, especially artificial neural networks demonstrate a great success

with the assigned tasks, including the time series forecasting.

2



Introduction 3

The main issue of this thesis is to perform the analysis of provided data and to develop

the qualitative forecasting models for them. In order to solve this task, the theoretical

part of the thesis will be devoted to the survey of the time series problematic, forecasting

methods, data preprocessing and other important aspects of time series analysis.



Chapter 2

Time Series Analysis

2.1 Introduction to Time Series

The term ”time series” itself, denotes a data storing format, which consists of the two

mandatory components - time units and the corresponding value assigned for the given

time unit. Values of the series need to denote the same meaning and correlate among

the nearby values. Restriction is, that at the same time there can be at most one value

for each time unit. For example, sequences, which just enumerate some values, they do

not fulfill the time series requirements.

In theory, there are two fundamental ways, how time series data are recorded. The first

way, values are measured just for the specific timestamps, what may occur periodically,

or occasionally according to concrete conditions, but anyway, result will be a discrete set

of values, formally called discrete time series. This is very common case and frequently

observed in practice. In economy sector, most of the indicators are measured periodically

with the specific periods, therefore economic indicators represent an appropriate example

of discrete time series.

The second option is, that data are measured and recorded continuously along the

time intervals. Electrical signals from sensors, earth shakings, various indicators from

medicine, like ECG, or many other scientific sensors, they all represent a continuous

measurement of corresponding physical quantity. This kind of processes produces a

continuous time series. Figure 2.1 demonstrates a seismogram from station HAWA

(Hanford, Washington, USA), example of continuous time series.

4
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Figure 2.1: Seismogram from HAWA station (Source: Hanford, Washington, USA)

2.2 Time Series Types Classification

There are many various time series classifications based on specific criteria. The most

significant dependencies are: length of the time step, memory and stationarity.

Depending on the distance between recorded values, time series data are classified into:

• equidistant time series

• non-equidistant time series

Equidistant time series are formed, when its values are recorded periodically with a

constant period length. A lot of physical or environmental processes are described by

this kind of time series. Non-equidistant time series are those time series, which do

not keep the constant distance between observations. Econometric indicators, like stock

prices are not necessary performed within regular time intervals, they are regulated by a

concrete supply and demand rates on the specific market. Therefore, this kind of series

suitably demonstrates a non-equidistant time series example.

According to the rate of dependency between newly observed values and its predecessors,

time series are divided into:

• long memory time series

• short memory time series
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Time series with long memory are those, for which the autocorrelation function decreases

slowly. [1] This kind of time series usually describes processes, which don’t have fast

turnovers. Traffic congestion, electric energy consumption, different physical or meteo-

rological indicators, like air temperature measurements, all these processes are usually

described by long memory time series. Short memory time series are those, for which

autocorrelation function is decreasing more rapidly. Typical examples contain processes

from the econometric sector.

Another classification of time series is based on their stationarity:

• stationary time series

• non-stationary time series

Stationary time series are time series, for which statistical properties like mean value

or variance, are constant over time. These time series stay in relative equilibrium in

relation to its corresponding mean values. Other time series belong to non-stationary

time series. In industry, trading or economy, time series more frequently belongs to the

non-stationary category. In order to deal with the forecasting task, non-stationary time

series are usually transformed to the stationary ones, by the appropriate preprocessing

methods.

2.3 Aims of Time Series Analysis

Time series analysis unites a group of methods for work with time series data, in order

to extract the potentially useful information. There are two main goals of time series

analysis:

1. Determination of the time series behavior - Identification of the important param-

eters and characteristics, which adequately describe the time series behavior.

2. Time series forecasting - Forecasting the future values of the time series, depending

on its actual and past values.

Both of these goals require the time series model identification. As soon as the model

is indentified, it can be exploited to interpret the time series behavior, for example, to

understand the seasonal changes of the commodity prices. The model can also be used

to extrapolate the time series, i.e. to forecast its future values.
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2.4 Time series components

Usually, the most of analysis methods assume, that time series data contains the sys-

tematic component (typically comprising several components) and random noise (er-

ror), which complicates detection of the regular components. Therefore, the majority

of methods, includes different noise filtration methods, in order to detect the regular

components, or it has to performed during data preprocessing.

The most of the regular components belongs to two main classes. They belong to either

a trend or seasonal component. The trend is a general systematic linear or non-linear

component, which may change over time. Seasonal component is periodically repeating

component. Both these types of regular components are usually presented in the time

series simultaneously. For example, sales may increase from year to year, but there is

a seasonal component, which reflects the significant growth of sales in December and a

drop in August.

This model can be demonstrated on the series representing the monthly international

airline passenger counts from 1949 to 1960. The graph of monthly passenger counts

clearly demonstrates almost linear trend, i.e. stable increase from year to year (the

number of transported passengers in 1960 is four times greater, than in 1949). In the

same time, the progress of monthly rates within one year is repeating, and is similar from

year to year (for example, the rate of passengers is higher in the periods of holidays).

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
100

200

300

400

500

600

700
Airline Passenger Counts

Figure 2.2: Monthly international airline passenger counts from 1949 to 1960
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It has been already mentioned, that general model of time series usually contains several

components: trend component T (t), seasonal component S(t), random noise component

R(t), and sometimes there is additionally mentioned a cyclical component C(t). The

difference between cyclical and seasonal components is, that seasonal components repre-

sents a regular seasonal periodicity, while cyclical component has a longer lasting effect

and may vary from cycle to cycle. Very often, cyclical component is integrated into one

trend component T (t). Figure 2.3 demonstrate an example of time series decomposition.

Figure 2.3: Time series components

Now, it is important to describe, how this components mathematically interact together,

in order to compose a time series. The concrete functional relationships between the

components may vary for different series. However, there are two main models, how

they interact to each other:

• Additive model

Z(t) = T (t) + C(t) + S(t) +R(t) (2.1)

• Multiplicative model
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Z(t) = T (t)× C(t)× S(t)×R(t) (2.2)

Main difference between these two models may be observed in a growth rate. Previously

mentioned example of monthly airline passenger counts, demonstrates a typical multi-

plicative model, where the amplitude of seasonal changes increases with the trend. The

growths of the trend or seasonal components may be expressed in percentage (multi-

plicative model) or in absolute values (additive model). [2]

2.5 Autocorrelation and Partial Autocorrelation

Dependencies between the actual and historical values represent a fundamental principle

of time series forecasting. It can be easily observed, that each value of the series is very

similar to its neighboring values. Additionally, time series contain a seasonal component,

what means, that each value is also dependent on the values of identical time, but one

season ago. Formally, any statistical dependency between two entities is denoted as a

correlation, and is expressed by a corresponding coefficient.

2.5.1 Autocorrelation function

Autocorrelation function calculates the correlations between the time series and its

shifted copies at different points in time. The autocorrelations are usually calculated for

the specific range of lags (shifts) and are expressed in the form of graph, called correl-

ogram. Investigation of autocorrelations, enables to detect important dependencies in

time series data. [3]

2.5.2 Partial Autocorrelation function

Sometimes it can happen, that the first value is heavily dependent on the second value,

the second value is heavily dependent on the third value and therefore the first value is

also dependent on the third, and so on. This causes, that significant dependencies can

be not found on the graph of autocorrelation function. Partial autocorrelation function

is another important tool. It is a modification of autocorrelation function, which allows

to eliminate the described problem. [4]

Figure 2.4 demonstrates results of autocorrelation function and partial autocorrelation

function for the time series data from the previous section (Monthly international airline

passenger counts from 1949 to 1960).
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Figure 2.4: ACF and PACF of monthly airline passenger counts

2.6 Time series forecasting

Time series forecasting belongs to most important analysis methods, performed over the

time series data. General idea is based on the fact, that information about the past

events can be effectively exploited to create predictions about the future events. From

the point of view of the time series data, this means, that forecasting models use already

measured values to predict future values before they are observed.

When talking about the time series forecasting, it is necessary to emphasize the impor-

tance of distinction between two terms, ”forecasting methods” and ”forecasting models”.

Despite the fact, that both these terms have precisely specified meaning, in practice, they

are often used mistakenly with the mixed meanings.

• Forecasting method – Denotes an algorithmic sequence of actions, that are neces-

sary to perform, in order to obtain the time series forecasting model. Additionally,

forecasting methods determines the way of quality assessment measurements.

• Forecasting model – Denotes a functional representation, that adequately describes

a time series. On the basis of this forecasting model, future values of the time series

are forecasted.
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There are two main ways, how the time series forecasting tasks are defined. The first

option is based on the computations, that use only the past values of the same time

series, in order to predict the values in future. The second option allows to use not only

the past values of the same time series, but also another external factors in addition, that

can be useful for forecasting. In these cases, external factors are very often presented as

another time series. Time series of the external factors are not obliged to have the same

time step intervals, as the original time series data. Therefore, additional steps must be

taken, in order to deal with this problem. It is also expected, that the external factors

should have some influence on the original time series progress. For example, an intuitive

external factors of energy consumption could be various meteorological indicators, like

air temperature or air humidity.

2.6.1 Forecasting without external factors

Time series forecasting without external factors. If the observations of some stochastic

process are available at discrete units of time t = {1, 2, . . . , T} , then the sequence of

values Z(t) = {Z(i) | i ∈ T} = {Z(1), Z(2), ..., Z(T )} is denoted as a time series.

Let’s assume that at the moment of time unit − T , it is necessary to make a forecast of

− l future values of the given process Z(t). In other words, it is needed to determine the

most probable future values for each of the time units {T + 1, . . . T + l}. Time unit − T

is a moment when the forecast is performed, it is usually named by term ”origin”. The

parameter − l is denoted as a ”leadtime”, it represents the number of future values

that are going to be predicted.

In order to calculate the time series values at future time units, it is necessary to de-

termine functional dependency that describes a relationship between past and future

values of the given time series. The forecast is based on − k past values, denoted as

an input vector ZT . As a result, the vector of − l future predictions will be obtained,

denoted as an output vector ẐT . All predicted values Ẑ(i) will be marked with sign ˆ

in order to label them as predictions, not the real values.

ZT =



Z(T )

Z(T − 1)

Z(T − 2)
...

Z(T − k)


ẐT =


Ẑ(T + 1)

Ẑ(T + 2)
...

Ẑ(T + l)

 (2.3)

f(ZT ) = ẐT (2.4)
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The functional dependency (2.2) is usually denoted as forecast function and it represents

the forecast model. The intuitive aim is to find the forecast function such that the

deviations between predicted values and actual values, that will be observed later in

future, are as small as possible.

εT =


Z(T + 1)

Z(T + 2)
...

Z(T + l)

−


Ẑ(T + 1)

Ẑ(T + 2)
...

Ẑ(T + l)

 (2.5)

Analysis of deviations vector (2.3) represents a basis of so called “loss function” or

“error function”. This function measures the quality of forecast, based on the measured

deviations. There are more options, how to calculate rate of quality from the deviations

vector, usually root mean square error or mean absolute deviation are calculated. More

details about error functions will be discussed in section 2.2. The formal objective of

time series forecasting is then formulated as a minimization of loss function.

In addition to calculations of future values, sometimes it is required to determine accu-

racy limits. The accuracy of the forecasts may be expressed by calculating probability

limits on either side of each forecast. These limits may be calculated for any convenient

set of probabilities. They are such that the realized value of the time series, when it

eventually occurs, will be included within these limits with the stated probability. [1]
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Figure 2.5: Time series forecasting without external factors
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2.6.2 Forecasting with external factors

Time series process Z(t) is specified at the discrete time units t = {1, 2, . . . , T}. It is as-

sumed, that this time series is affected by a set of external factors {X1(t1), X2(t2), . . . Xm(tm)}.
Each external factor is represented as an independent time series process. For ex-

ample, an external factor X1(t1) is specified at the corresponding discrete time units

t1 = {1, 2, . . . , T1}.

The original time series Z(t) and external factors Xi(ti) are not obliged to be specified

at same time units. If the time units t, t1, t2, . . . , tm are not equal, then it is necessary

to recalculate the values of external factor to a single scale t.

Let’s assume that at the moment of time unit T , it is necessary to make a forecast of

− l future values of the given process Z(t). In order to calculate the predictions, it

is necessary to determine functional dependency, that describes a relationship between

past and future values, also considering the impact of external factors.

ZT =



Z(T )

Z(T − 1)

Z(T − 2)
...

Z(T − k)


Xi, T =



Xi(T + l)
...

Xi(T + 1)

Xi(T )

Xi(T − 1)
...

Xi(T − k)


ẐT =


Ẑ(T + l)

...

Ẑ(T + 2)

Ẑ(T + 1)

 (2.6)

f(ZT , X1,T , X2,T , ..., Xm,T ) = ẐT (2.7)

The functional dependency (2.5) is a forecast function and it represents the forecast

model with external factors. The rest tasks are performed in the same way as they were

in the case of forecasting without external factors. The main objective is to find the

forecast function such that the deviations between predicted values and actual values,

that will be observed later in future, are as small as possible. This objective formulates

minimization task of so called ”loss function” or ”error function”. More details about

error functions will be discussed in section 2.2.

The accuracy limits may be calculated for any convenient set of probabilities. Accuracy

limits are such that the realized value of the time series, when it eventually occurs, will

be included within these limits with the stated probability. [1]
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Figure 2.6: Time series forecasting with external factors

2.7 Forecasting Accuracy

Forecasting accuracy is a measure, which expresses performance of forecasting model.

It is a reverse value to the measure of forecasting error. There are more options, how to

calculate the measure of forecasting error. Each of them expresses a little bit different

information. At the beginning, it is necessary to define the forecast error. It is expressed

as a deviation of predicted value and actual value:

ε(t) = Z(t)− Ẑ(t) (2.8)

• Mean absolute percentage error (MAPE)

MAPE =
1

N

N∑
t=1

| Z(t)− Ẑ(t) |
Z(t)

· 100% (2.9)

• Root Mean squared error (RMSE)

RMSE =

√√√√ 1

N

N∑
t=1

(Z(t)− Ẑ(t))2 (2.10)

• Mean squared error (MSE)

MSE =
1

N

N∑
t=1

(Z(t)− Ẑ(t))2 (2.11)
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• Mean absolute error (MAE)

MAE =
1

N

N∑
t=1

| Z(t)− Ẑ(t) | (2.12)

• Sum of squared errors (SSE)

SSE =
N∑
t=1

(Z(t)− Ẑ(t))2 (2.13)

The suitability of MSE,RMSE,MAE and SSE measures is quite similar. They differs

only a little bit, for example strong errors are penalized by RMSE less than by other

measures. MAE and RMSE represent a scale dependent measure, while others are not

scale dependent. All these measures are suitable for comparison of different forecasting

methods on the same test data.

MAPE is one of the most frequently used forecasting error measures. It expresses the

percentage error, what makes it easily understandable. It is suitable measure for com-

paring the performance of one forecasting method on different testing data. But it has

one significant shortcoming, it can be used only for time series with values much greater

than 1. Otherwise, if the actual value of the series is close to 0, then a denominator will

contain very small number, what will make MAPE measure close to infinity. This will

not express a correct performance.

2.8 Data preprocessing

Before the raw time series data can be applied to the forecasting methods, usually they

have to undergo several transformations. Proper data preprocessing significantly affects

the forecast quality. Some forecasting methods, for example neural networks methods,

have strict requirements for the format of input data. The absence of the proper data

preprocessing, leads to the inefficiency of the given forecasting method.

2.8.1 Outliers detection

An outlier is an observation, that significantly differs from the other observations in

the sample. In practice, very often can be observed situation, when data contain some

outliers. Identification of potential outliers is very important preprocessing task, because

of the following reasons:
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1. Outlier may indicate mistakenly recorded data.

2. Sometimes the outlier may represent the correct data, but their presence decreases

the effectiveness of the forecasting model. Therefore, their presence is undesired.

Outliers detection is usually performed by application of some appropriate filtering meth-

ods, for example ”Hampel filter”. [5] As soon as the outlier is detected, it can be excluded

from the dataset, or replaced by the mean of its neighboring values.
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Figure 2.7: Outliers detection example

2.8.2 Denoising and Smoothing

Time series data almost always contain a random noise component. The purpose of de-

noising methods, is to filter and remove the unwanted noise. Smoothing of the processed

data belongs to the most common denoising methods. Smoothing performs some kind

of local averaging, which usually causes the elimination of unwanted noise signal. This

can be explained by the fact, that random noise is known to be a stationary process,

and stationary processes have a mean value equal to zero. Therefore, smoothing can be

suitably used to remove the noise. The most popular smoothing algorithms are:
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• Moving average filter - Each value in the series is replaced by the simple or weighted

average of its neighboring values.

• Median filter - Similar to moving average, but values are replaced by median value.

• Local regression filter - Values are replaced by the smoothed curve with values

fitted by least squares approach.

2.8.3 Differencing

In practice, very often happens, that it is necessary to forecast a non-stationary time

series data. But the majority of forecasting methods can work only with the stationary

series. There are several options, how this problem can be solved.

The most common option is differencing of the time series, which usually reduces the

non-stationarity. Differencing can be performed multiple times, if there still remains

some evidences of non-stationarity. Similarly the rate of relative differences can be used.

• Simple differencing:

D(t) = Z(t)–Z(t− 1) (2.14)

• Relative differencing:

R(t) =
Z(t)–Z(t− 1)

Z(t− 1)
(2.15)

Another option is application of logarithmic return rate. This is very similar method, it

just use the logarithmic values instead of absolute values. Logarithmic return rate pro-

vides better scaling properties, which are useful if the original data contain an increasing

oscillation character or exponential trend.

LR(t) = log(Z(t))–log(Z(t− 1)) = log(
Z(t)

Z(t− 1)
) (2.16)

2.8.4 Scaling

Scaling is a transformation, that adjust scales of the values within some specific bound-

aries. The most common used scaling are transformations of values within 〈−1, 1〉 range

or 〈0, 1〉 range.

• Scaling range 〈−1, 1〉

Z
′
(t) =

2 · Z(t)− (max+min)

max−min
(2.17)
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• Scaling range 〈0, 1〉

Z
′
(t) =

Z(t)−min
max−min

(2.18)

Where min;max corresponds to minimum;maximum values of the time series Z(t).

2.8.5 Normalization

The general aim of normalization is an adjustment of the values by shifting and scaling,

in order to obtain a so called normal distribution of the values. This produces a time

series with mean property equal to 0 and standard deviation property equal to 1.

Z
′
(t) =

Z(t)− µ
σ

(2.19)

Where µ is the mean value and σ is the standard deviation of the given time series.

µ =
1

n

n∑
t=1

Z(t) σ =

√√√√ 1

n

n∑
t=1

(Z(t)− µ)2 (2.20)



Chapter 3

Forecasting Methods

3.1 Regression models

There is a lot of tasks, which require the investigation of relationships between two and

more variables. Regression analysis is a typical method, that is being used for this kind

of problems. The aim of regression analysis is to estimate the dependencies between

main variable and a set of external factors (regressors).

The linear regression model is the simplest and the most widely used regression model.

It assumes, that there is a set of external factors X1(t), X2(t), . . . , Xp(t), which have an

impact on the given process Z(t) and the relationship between them is linear. Forecasting

model based on the linear regression is determined by an equation (2.12).

Z(t) = α0 + α1X1(t) + α2X2(t) + . . . + αpXp(t) + εt (3.1)

Where αi, i = 0. . . p are regression coefficients (parameters), ε is the approximation

error. In order to obtain a forecasted values Z(t) at time units t, it is necessary to have

values Xi(t) at time moment t, sometimes in practice this can be impossible in some

kind of problems.

The nonlinear regression models are based on assumptions, that there is given a mathe-

matical function, that describes relationship between given process Z(t) and the external

factor X(t).

Z(t) = f(X(t), α) + εt (3.2)

19
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While constructing the forecast model, it is necessary to determine the function param-

eters α. For example, Z(t) dependency on sin(X(t))

Z(t) = α1sin(X(t)) + α0 + εt (3.3)

In order to construct this model it is sufficient only to determine the parameters α =

(α0, α1). However in practice it is not very common, that type of functional dependency

between process Z(t) and external factor X(t) is already known in advance. Therefore,

nonlinear regression models are used less frequently, than the linear ones.

3.2 Autoregressive and moving average models

Autoregressive models are based on the idea, that values of process Z(t) are linearly

dependent on some number of past values of the same process Z(t). In this model, the

actual value of the process is expressed as a sum of finite linear combination of previous

values and the impulses, called white noise.

Z(t) = c+ ϕ1.Z(t− 1) + ϕ2.Z(t− 2) + ...+ ϕp.Z(t− p) + εt (3.4)

where ϕi are parameters of the model; c is a constant; ε is white noise (error of the

model).

The formula describes the autoregressive model of order p. This model is often denoted

as AR(p). The paramters c and ϕi are usually estimated by mean least squares or

maximum likelihood methods.

The second model, moving average model. It plays very important role in time series

description and is frequently used in relation with the autoregressive models. Moving

average model of order q is described by formula:

Z(t) =
1

q
[Z(t− 1) + Z(t− 2) + ...+ Z(t− q)] + εt (3.5)

where q is order of moving average and εt is prediction error.

In the books, moving average model of order q is usually denoted as MA(q). Actually,

moving average model is a finite impulse response filter applied to white noise.

In order to achieve better prediction quality, two previous models are often merged

into one model, autoregressive and moving average model. Common model is denoted



Forecasting Methods 21

as ARMA(p, q) and it unites a moving average filter of order q and autoregression of

filtered values of order p.

If the time series data show evidence of non-stationarity, then the initial differencing

step can be applied to reduce the non-stationarity. This model is usually denoted as

ARIMA(p, d, q). The parameter d represents the degree of differencing, it corresponds

to the integrated part of the model.

Another option is an ARIMAX(p, d, q) model, that is an extension of ARIMA(p, d, q)

model. It is described by formula:

Z(t) = AR(p) + α1X1(t) + ...+ αSXS(t) (3.6)

This model is extended by the impact of external factors. In this model, the process

Z(t) is a result of model MA(q), that are filtered values of the original process. Subse-

quently autoregressive forecasting, with additional regression parameters, corresponding

to external factors, is performed.

3.3 Exponential smoothing models

Despite the fact, that Exponential smoothing methods were invented in the middle of

20th century, they are still frequently used, even today. Exponential smoothing models

are widely used for modeling finance and economical processes. The basis of exponential

smoothing, is an idea of repetitive revision of forecasting function, with each income of

newly observed value. Exponential smoothing model assigns exponentially decreasing

weights to past values, according to the age. Therefore, newly observed values have

higher impact on forecasted value, than the elder ones. Functional representation of

exponential smoothing model is expressed by the following equations:

Z(t) = S(t) + εt (3.7)

S(t) = α · Z(t− 1) + (1− α) · S(t− 1) (3.8)

S(1) = Z(0) (3.9)



Forecasting Methods 22

where Z(t) is an actual value of the time series observed at time unit t; S(t) is a smoothed

value at time t; εt is an error between actual and smoothed value; α is a smoothing

coefficient, 0 < α < 1. In this model, each subsequently smoothed value S(t) is a

weighted combination of previous time series value Z(t − 1) and previously smoothed

value S(t− 1).

3.3.1 Double exponential smoothing

Double exponential smoothing, sometimes referred as ”Holt-Winters double exponen-

tial smoothing” is an improved modification of simple exponential smoothing. This

model is usually used for processes, which contain a trend component. In comparison

to the simple exponential smoothing, in these cases, it is necessary to deal with addi-

tional smoothing coefficient related to trend component. The model is described by the

following equations.

S(t) = α · Z(t) + (1− α) · (S(t− 1) +B(t− 1)) (3.10)

B(t) = β · (S(t)− S(t− 1)) + (1− β) ·B(t− 1) (3.11)

S(1) = Z(1)B(1) = Z(1)− Z(0) (3.12)

where Z(t) is an actual value of the time series observed at time unit t; S(t) is a smoothed

value at time t; α is the data smoothing coefficient, 0 < α < 1; β is the trend smoothing

coefficient, 0 < β < 1.

Forecasting with double exponential smoothing

In order to obtain a forecasting model based on exponential smoothing, it is necessary

to have some specific amount of historical values of the given time series. The model is

being built, by solving an optimization task, which consists of finding the appropriate

values of α and β parameters, such that MSE of the smoothed curve is minimal. As

soon as the optimal values for parameters are estimated and the model is created, the

forecasting of future values can performed according to the following equations:

F (t+ 1) = S(t) +B(t) (3.13)
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F (t+m) = S(t) +m ·B(t) (3.14)

3.4 Artificial neural networks models

In the past few years, there can be observed a great interest in machine learning, es-

pecially in artificial neural networks sector. Artificial neural networks are tools, that

are being used today for solving huge amount of tasks from different areas. The most

frequent examples are time series forecasting, pattern recognition, data clustering and

classification. Such a great success is determined by several reasons.

1. Artificial neural networks represent exclusively powerful tool, that enables to repro-

duce very complex nonlinear dependencies. For many years linear models played

the leading role in the most areas, as there were a lot of well designed and opti-

mized tools, which satisfactorily coped with assigned tasks, but problem was with

tasks, for which the linear approximation is unsatisfactorily.

2. Artificial neural networks are learning from examples. Artificial neural networks

receives a set of representative examples and then a learning process starts, which

tries to find and extract the structure of data. Certainly, proper application of

artificial neural network demands specific requirements for a correct formulation of

representative data set and network’s architecture. However, proper construction

of a such artificial neural network allows to cope with tasks, which can be solved

by the traditional algorithms only with the great difficulties. For example, pattern

recognition task, practically used for face recognition, solving it in traditional way

would result in a very complex problem. However, the same problem can be

prospectively solved by the artificial neural networks. [6]

3.4.1 Biological inspiration

Artificial neural networks are results of researches in the field of Artificial intelligence.

Human brain is known to be able to deal with the problems much more complex, than

the computers solve. It consist of huge number of neurons connected with each other

by numerous connections. Neurons are specific nerve cells, belonging to the nervous

system, that are able to distribute electrical or chemical signals. Neuron cell has a

branched structure consisting of the three main parts: information inputs - dendrites,

information output - axon, and the nucleus. The axon branches of the cell are connected

to the dendrites of other cells with the connections called synapses. Dendrites of the
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neuron receive electrical signals from other neurons through the synapses. If the total

rate of the input signals, received by the dendrites of the neuron, exceeds the determined

threshold, then the given neuron is going to fire an action potential. It is short-lasting

process, during which the neuron sends signals to its neighbors, which also may fire.

The intensity of transferred signal strongly depends on the activity of synapse between

two neurons. The process of learning basically stands for an appropriate changes of the

activities of the synapses connections between neurons. [7]

Figure 3.1: Biological neuron

3.4.2 Artificial neuron model

Artificial neuron represents a simplified model of the natural nervous cell. The evolution

of artificial neurons contains several models, which have passed certain stages of devel-

opment. Today, the most common artificial neuron is usually referred to the following

model, determined by the three main components:

1. The set of synapses - Connecting links, each of which is characterized by its own

weight. These weights correspond to the activities of synapses in biological neuron.

The input signal xj , that passes through the synapse j, which belongs to the neuron

k, is multiplied by the weight wkj .
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2. The adder - Component, which calculates the weighted sum of signals, i.e. the

linear combination. Additionally, for each neuron there is defined a threshold

value bk, denoted as ”bias”, which is added (or subtracted) to the weighted sum of

signals. Obtained result is usually denotes as ”induced local field” or ”activation

potential”, depending on the value of bk.

3. Activation function - Output obtained from the adder component, is passed further

to the activation function. Activation function transforms the input and produces

the output yk, referred as output of neuron. [6]

Figure 3.2: Artificial neuron model

In mathematical terms, artificial neuron depicted by figure 3.2 may be described by the

following equations.

vk =

m∑
i=0

wkj · x(j) (3.15)

yk = ϕ(vk) (3.16)

where x0 = 1 and x1, x2, ..., xm are the input signals; wk1, wk2, ..., wkm are the respective

synaptic weights of neuron k; bk is the bias; vk is the ”induced local field” or ”activation

potential”; ... is the activation function; yk is the output signal of the neuron. [6]
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3.4.3 Types of Activation Function

The activation function ϕ(v), defines the output of a neuron. There is a lot of suitable

functions, that can be exploited as the activation function in artificial neurons. Ap-

propriate selection of activation function strictly depends on the format of input and

output values, and the task expected to be performed by a neural network. It is also

important to mention, that the activation functions of individual neurons are not obliged

to be identical, there can be easily used different activation functions inside one neural

network.

The most popular activation functions [8]:

1. Threshold function - Sometimes called binary step function. Today, in practice,

this activation function is used rarely. More often, it demonstrates original inspi-

ration by the biological neuron.

2. Sigmoid function - Frequently used function, when output values are scaled in ¡0;1¿

range.

3. Hyperbolic tangent function - Similar to sigmoid function. Output values are in

¡-1;1¿ range.

4. Identity function

5. ReLU - In recent years, ReLU is becoming very popular.

Figure 3.3: Activation functions
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3.4.4 Neural Network Architectures

In the previous sections, there were described just the actions inside one artificial neu-

ron. Now the main question is, how to connect the individual neurons to each other?

In theory, neurons may be connected into neural networks with the very diverse struc-

tures. However, in practice, artificial neurons are usually grouped into layers, that later

formulate a neural network.

Figure 3.4: Artificial neural network example

Figure 3.4 demonstrates an example of neural network with one input layer, three hidden

layers and one output layer. Actually, the input layer is not a real layer. It just represents

the number of input values passed to the neural network. However, in the books, it is

very often graphically demonstrated as the first layer of the network. All others are

real layers, in sense of previously described rules. Each node in the hidden or output

layer, represents a neuron. The arrows between neurons represent connections between

them, and indicate the direction of signal processing. Any signal inside the network

is eventually directed to the output layer, which represents an overall output of the

network. All layers between the input and output layers, are called hidden layers. The

name ”hidden” is related to the fact, that neural network acts like a black box, and

all communication with network is performed through the input and output layers, and

everything, that happens inside, remains invisible to the user.

Generally, there are two main types of artificial neural networks structures:

1. Feedforward neural networks - Unites a group of networks, where the signal is

passed strictly in one direction from the input layer to the output layers (Figure

3.4). Assumption is, that there is no cycles inside the network.
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2. Recurrent neural netwroks - Represents a group of networks, which contain at least

one cycle inside the network. The cycle inside the neural network means, that the

output signal of some neuron, passing through the certain sequence of connections,

may occur as the input to the neuron, that it has already reached. (Figure 3.5)

Figure 3.5: Artificial neural network example

Feedforward neural networks are used more frequently than recurrent networks, in part

because the learning algorithms for recurrent networks are less powerful. Nevertheless,

recurrent networks are still very popular. They are much closer to the biological neural

networks and the idea how human brain works. Recurrent networks may be used to

solve important problems, which can only be solved with great difficulty by feedforward

networks. [9]

Additionally, artificial neural networks are classified as ”deep” networks, if the number

of hidden layers is greater than one. (Figure 3.4) [9]

3.4.5 Appropriate architecture

Selecting an appropriate architecture of neural network is an important step. When

selecting an architecture, it is necessary to deal with following parameters:

• Number of neurons in input layer - Usually, number of neurons in input layer

directly depends on the format of the input data. For example, if the neural

network will be used for time series forecasting, the number of input neurons will

correspond to the number historical values used for forecasting. If the neural

network will be used for images classification, the number of input neurons will

correspond the number of pixels of the images.

• Number of neurons in output layer - Similarly as with the number of input neurons,

the number of output neurons directly depends on the performed task and the

amount of output information. For example, if the neural network is used time
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series forecasting, the number of output neurons will correspond to the number of

forecasted values. If the neural network is used for classification of images with

the handwritten number, the number of output neurons can be 10, each neuron

for one number (class of images).

• Number of hidden layers - In mathematical theory, neural network with at least

one hidden layer, is sufficient to approximate or learn dependencies of any non-

linear function. Despite this, for many tasks it is much more suitable to use a

neural network with more than one hidden layer. For more complex tasks, like

images classification, are usually used deep neural networks with much more than

one hidden layer. On the other hand, tasks, which do not contain so complex

dependencies, they also do not require so complicated structures, as it will just

lead to overfitting and decrease the performance. [9]

• Number of neurons in hidden layer - This parameter is also very sensitive to over-

fitting. Usually, there is no regular rule, how to choose the number neurons in

hidden layer. There exist some recommendations, but the most reliable solution

leads to the benchmarking. [6]

3.4.6 Networks training

Architecture selection is just the first step. After the neural network is constructed, it

is still not ready to be exploited. During the initialization, the weights of connections

between neurons are selected randomly. Before the neural network can be adequately

used for required task, proper weights have to be found. This process is usually referred

as a learning or training of the neural network.

There exist different learning algorithms, each of them is suitable for the specific network

architecture. Backpropagation algorithm is one of the most popular training algorithms.

It is very effective algorithm, but it can be used for training networks with at most one

hidden layer. The majority of tasks can be easily solved by neural networks with one

hidden layer, therefore backpropagation algorithm is suitable for these cases. In the case

of deep networks, backpropagation leads to the vanishing gradient problem, and makes

it impossible to use. [9]

3.4.7 Cross-validation

Before the learning process can be launched, it is necessary to perform data partitioning.

Data are divided into three sets: training set, validation set and testing set. Usually,

training set is the largest and it contain the data, which will be used for network training.



Forecasting Methods 30

Validation set is used to deal with the overfitting problem. Overfitting is a common

problem, which may occur when it is required to fit a model to the training data. After

some moment the model perfectly fits the training set, but it will have low performance

on the newly observed data.

Figure 3.6: Overfitting example

In order to deal with the overfitting problem, the validation set is used. Neural network

is trained on the training data, but the error is calculated for the validation set. Training

is performed up to the moment when the error for validation set starts to increase.

Figure 3.7: Cross-validation
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Testing set doesn’t participate in network training. It is just used to express the perfor-

mance of network on the independent data.

3.4.8 ANN forecasting model

Artificial neural networks allow to create very powerful forecasting models. Its ability to

deal with the non-linear dependencies gives a great advantage, in comparison to other

forecasting methods. Before the time series data can be applied to the neural network,

it is necessary to ”cut” the data on the samples of the specific length, which corresponds

to the number of neurons in the input layer. As well, it is required to prepare the target

samples, what corresponds to the forecasted values.

As soon as the neural network is constructed and successfully trained, it represents a

forecasting model and can be used for time series forecasting, as any other model.

Figure 3.8: ANN and time series forecasting

3.5 Markov chain models

Forecasting models based on the Markov chains assume, that future state of the process

is dependent only on its current state and is not dependent on its elder states. Markov

chain models are applicable on the short-memory time series. Example of Markov chain

for process with 3 states is illustrated on figure 1.3.
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Figure 3.9: Markov chain model

In this model, S1, S2, S3 - are states of process Z(t), λxy – probability of transition

from state x to state y. By building the Markov chain model, the set of states and

corresponding transitions’ probabilities are defined. If the current process state is de-

fined, the future state is selected as the state with maximal transition probability. If the

transition probabilities are properly stored in matrix, subsequent future values can be

determined by probability matrix’s multiplication and maximum probability selection.

[10]

3.6 Forecasting models comparison

Forecasting Model and

Method

Advantages Disadvantages

Regression models The main advantages of

the given models are:

simplicity, flexibility and

uniformity of calcula-

tions. Simplicity of model

construction (only linear

models). Transparency of

all intermediate calcula-

tions.

Inefficiency and low adapt-

ability of linear regression

models for non-linear pro-

cesses.Very complex non-

linear model construction

for the tasks with non-

linear functional depen-

dency.
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Autoregressive and Mov-

ing average models

Transparency and unifor-

mity of calculations and

model’s construction. Rel-

atively not complicated

model construction. The

most popular frequently

used forecasting method.

A lot of publications and

information about how to

apply this method for the

specific problems.

Large number of pa-

rameters required to be

determined. Linearity,

low adaptability and in-

efficiency with non-linear

processes.

Artificial Neural Networks

models

The main advantage of

these models is a non-

linearity. Neural net-

works can easily deal with

the non-linear dependen-

cies between future and

past values of the pro-

cesses. Great adaptability

and scalability. Ability of

parallel computations.

Large number of param-

eters and significant op-

tions necessary to be se-

lected. High hardware

performance requirements

during the network train-

ing process. Complexity of

architecture and absence

of transparency.

Exponential smoothing

models and methods

Transparency of interme-

diate calculations, simplic-

ity and relative effective-

ness. Easy model con-

struction.

The disadvantage of this

model is inflexibility.

Markov chains models Transparency of interme-

diate calculations.

Impossibility of long term

forecasting.
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Chapter 4

Internet traffic data forecasting

The main tasks of this thesis are: analysis of provided time series data sets and devel-

opment of the corresponding forecasting models. All data sets that have been provided

to me, contain local outdoor temperature values of the specific buildings. Prediction of

this kind of temperature values represents a real practical task and plays an important

role for their further application by the thermal control units. In order to solve this

task, the practical part of thesis has been performed in two steps:

1. In the first step, there will be tested three different methods for time series forecast-

ing: Autoregressive-Moving-average methods, methods based on artificial neural

networks and Exponential smoothing method. Their effectiveness will be com-

pared on the public data sets downloaded from the internet. For this purpose,

there have been selected two data sets from absolutely different fields of activity.

The results will be summarized and proposition about forecasting methods for the

next step will be made.

2. In the second step, the main task of the thesis will be solved. Based on the experi-

ence, obtained from the previous experiments, there will be developed forecasting

models for each of provided data sets with temperatures values.

4.1 Internet traffic data set experiments

In the following section will be used an Internet traffic data set obtained from the

following source: https://datamarket.com/data/set/232h/

Data set represents aggregated traffic values (in bits) of an academic network backbone

in the United Kingdom. The values were collected during the period from 19 November

35
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2004 to 27 January 2005 with one hour interval. The following Figure 4.1 demonstrates

plotted graph of the given data set.
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Figure 4.1: Plot of the internet traffic data (in bits)

4.2 Data analysis and preprocessing

The initial and the most important step in time series analysis is determination of

whether a time series is stationary or not. This step is important because the most of

the forecasting methods can deal only with stationary time series. In the theoretical

part of the thesis it was described, that stationary time series is one, whose statistical

properties like mean and variance do not depend on time, at which the series is observed.

From the practical point of view, the time series non-stationarity is usually caused by

the presence of the trend or seasonality components inside the series.

Very often, simple visual observation of graphs of rolling mean and rolling variance

functions helps to make suggestion, whether the series is stationary or not [11]. Both

functions belong to so called ”rolling” analysis of the time series, when the sliding

window technique is used to plot the progress of statistical parameters for the given size

of window. The plot of rolling mean and rolling variance functions (Figure 4.2) show

the obvious evidence of the series non-stationarity. Definitely, the mean property do not

represent a constant progress over time, as well as the variance demonstrates the regular

fluctuations.
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Figure 4.2: Plot of the internet traffic data (in bits)

Analysis of ACF and PACF plots is another useful and very informative method for

identifying time series non-stationarity. There exist general rules, how to interpret the

results of ACF a PACF functions. It is known, that for a stationary time series, the ACF

drops to zero relatively quickly, while the ACF of non-stationary time series decreases

slowly [12].
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Figure 4.3: The plot of ACF of raw time series data.

The plot of ACF (Figure 4.3) demonstrates slowly decreasing progress with clear ev-

idence of regularly repeating patterns after every 24 values. This corresponds to the

non-stationarity of the series, with the presence of seasonality and trend components.

Finally, there has been used an ADF test (Augmented Dickey-Fuller test) to confirm the

previous assumptions about the series [13]. This is one of the statistical unit root tests,

that is frequently used for determination of series stationarity. The null-hypothesis for
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an ADF test is that the data are non-stationary. Usually 5% threshold is being used,

what means, that null-hypothesis is rejected if the p−value is less than 0.05. The result

of the ADF test for the raw data of the given data set confirms the assumption of time

series non-stationarity, the p− value = 0.11617, what is greater than 0.05.

Now, there is definitely no doubts, that the time series is non-stationary and that it

requires some preprocessing steps to stationarize it. At the beginning, the log trans-

formation has been performed. This helped to stabilize the variance of the series, but

it wasn’t enough to make it stationary [14]. Another important transformation is dif-

ferencing. It stabilizes the mean of the series and eliminates the trend and seasonality

components. There are two types of differencing, that should be considered for the given

time series, the seasonal and non-seasonal one. At first, the non-seasonal differencing

has been performed, it eliminated the trend from the series, but there still remained sea-

sonal patterns in the plot of ACF, repeating after every 24 hours. Differencing should

be performed one more time. It is known, that simple non-seasonal differencing can not

deal with strong seasonality effect. Therefore, after one non-seasonal differencing, there

will be also performed one seasonal differencing with lag = 24 [15]. The ACF and PACF

plots of the time series after all transformations are demonstrated in the Figure 4.4 and

Figure 4.5.

0 5 10 15 20 25 30
Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

tio
n

Autocorrelation function

Figure 4.4: The ACF plot of internet traffic data after log transformation, one non-
seasonal differencing and one non-seasonal differencing with lag=24.
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Figure 4.5: The PACF plot of internet traffic data after log transformation, one
non-seasonal differencing and one non-seasonal differencing with lag=24.

The ACF and PACF plots of the preprocessed time series data demonstrate signs of

stationarity. This is also confirmed by the ADF test. The p-values of the ADF test

of preprocessed data is far less then the critical value 0.05 and assumption about time

series stationarity is confirmed. At this moment, the time series is ready to be applied

by forecasting methods.

4.3 Autoregressive-Moving-average method

The forecasting models, that will be developed in the following section are based on

the analysis performed in the section 4.2. At the beginning, the data set is divided

into training data 85% and testing data 15%. The next step is to analyze the results of

ACF and PACF plots and make suggestion about the autoregressive and moving average

parameters of the model. There exist some general rules, how to identify the parameters

[16].

The analysis in the previous section demonstrated the necessity of one seasonal and one

non-seasonal differencing. This suggests the use of SARIMA(p, d, q)× (P,D,Q) model,

where both differencing parameters d and D are equal to 1. This corresponds to the

use of one non-seasonal and one seasonal differencing. The rest of parameters are going

to be selected based on the analysis of ACF and PACF. In the Figure 4.4 there can be

observed, that plot of ACF tails off after the lag 11 and the plot of PACF tails off after

the lag 9. This suggests, that autoregressive parameter p has to be tested up to 9 and

moving average parameter q has to be checked up to 11. In the plot of ACF there can

be also observed significant negative peak at lag 24, what corresponds to the effect of

seasonal component. According to the referenced rules, this should be solved by adding
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seasonal moving average parameter to model. Each model will be trained on training

data set and then its performance will be tested on test data set. To choose the optimal

SARIMA model, the MSE rate will be used.

Experimentally it has been tested, that SARIMA(9, 1, 8) × (0, 1, 1) model performs

better than other models. The corresponding MAPE rate is 4.53%. Further increasing

of the parameters was pointless and didn’t lead to improvement of performance. This is

can be explained by effect of overfitting. Figure 4.6 demonstrates the continuous plots

of 1-hour ahead forecasted values and the actual values of the test data set.
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Figure 4.6: The plots of one hour ahead forecasted values (blue) and actual values
(red) of the test data set.

The following Table 4.1 demonstrates MAPE and RMSE rates of SARIMA(9, 1, 8) ×
(0, 1, 1) model for different forecast horizons.

MAPE RMSE

1-hour ahead forecasts 4.52% 2343.9

2-hour ahead forecasts 7.17% 6040.6

3-hour ahead forecasts 9.79% 10463.0

Table 4.1: Forecasting performance of SARIMA(9, 1, 8)× (0, 1, 1) model for different
forecast horizons.
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4.4 Artificial neural networks method

In the following section, the artificial neural networks will be applied to the forecasting

of internet traffic data. The initial raw data set presented in chapter demonstrated

the obvious signs of non-stationarity. In theory, multilayer neural networks are able

to fit any even non-stationary time series data [9]. Although, in practice, it is highly

recommended to stationarize the time series before it is applied to neural networks,

because proper data preprocessing steps significantly accelerate the network training

process. In addition to the preprocessing transformations described in section 4.2, there

are two more transformations required to be performed: data normalization and creation

of the input and target data sets for network training.

For the purposes of the given experiment, it was decided to use the neural networks

with multiple hidden LSTM layers and the feedforward output layer. According to the

publication [17], this kind of architecture should be suitable for time series forecasting

problem. Now the whole complexity of the experiment is based in tuning of the hyper-

parameters of the neural network. For this purposes, the heuristic described in the

following book has been used [9].

Hyperbolic tangent activation function has been used for hidden LSTM layers and linear

activation function has been used for output feedforward layer. Different training algo-

rithms have been tested and finally the RMSProp training algorithm with learning rate

Alpha = 0.001 and mini-batch size equal to 5 has been selected. The cross validation

technique has been used to prevent the overfitting and stop the training process. At

this point it is assumed, that time series data have passed all necessary transformations

and are ready to be used. The inputs to the network are presented as the vectors with

24 timesteps, what corresponds to historical values for the one last day. The number

of hidden layers and the corresponding number of neurons have been experimentally

adjusted. Two hidden LSTM layers with the corresponding number of neurons 50 and

10 demonstrated the lowest forecast error. The given forecasting model has been tested

for three different forecast horizons: 1, 2 and 3 hours ahead.

Figure 4.7 demonstrates the diagram of the previously described network.
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Figure 4.7: Diagram of ANN used in this experiment. It demonstrates structure of
network, number of neurons, activation functions and dropout regularization parame-

ters of individual layers.

Figure 4.8 demonstrates the continuous plots of 1-hour ahead forecasted values and the

actual values of the test data set.
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Figure 4.8: The plots of one hour ahead forecasted values (blue) and actual values
(red) of the test data set.

The following Table 4.2 demonstrates MAPE and RMSE rates of ANN model for differ-

ent forecast horizons.

MAPE RMSE

1-hour ahead forecasts 3.50% 1804.8

2-hour ahead forecasts 4.86% 2882.7

3-hour ahead forecasts 5.63% 3410.9

Table 4.2: Forecasting performance of ANN model for different forecast horizons.
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4.5 Exponential smoothing method

In this section, double exponential smoothing, also refereed as Holt-Winters method,

will be used for time series forecasting. Estimation of the forecasting model is basically

the process of selecting the optimal Alpha and Beta parameters, such that the MSE rate

on the training set is minimal. For the given time series data the following parameters

Alpha=0.95 and Beta=0.025 demonstrated the lowest RMSE rate on the training data.

Figure 4.9 demonstrates the continuous plots of 1-hour ahead forecasted values and the

actual values of the test data set.
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Figure 4.9: The plots of one hour ahead forecasted values (blue) and actual values
(red) of the test data set.

The following Table 4.3 demonstrates MAPE and RMSE rates of Double exponential

smoothing model for different forecast horizons.

MAPE RMSE

1-hour ahead forecasts 10.23% 6182

2-hour ahead forecasts 15.36% 14352

3-hour ahead forecasts 20.64% 24694

Table 4.3: Forecasting performance of Double exponential smoothing model for dif-
ferent forecast horizons.
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4.6 Experiments summary

The main aim of the experiments in this chapter, is to demonstrate the effectiveness of

time series forecasting methods and corresponding preprocessing transformations pre-

sented in the theoretical part of the thesis. For this purpose, there has been used publicly

available data set of the internet traffic data. The given data set represents a typical time

series data from practice. It contains both, the trend and the seasonality components,

what allows to test all required preprocessing transformations.

Afterwards, three different time series forecasting mehtods have been tested. The ANN

model presented the best forecasting performance, but all three methods demonstrated

the remarkable results and confirmed, that they can be adequately used for time series

forecasting.



Chapter 5

Main experiments

The forecasting methods demonstrated in the previous sections, as well as the time series

analysis methods, have proven themselves in the experiments on the public data set of

internet traffic data. Now, the given methods will be applied for solving the main task

of the thesis – forecasting of the local outdoor temperature. The main aim of the task is

to develop the qualitative forecasting models such, that they can be further integrated

to other applications and provide adequate temperature forecasts for different control

units.

Temperature data set corresponds to the individual building and contains two columns

of values, more precisely, two individual time series. The first one, has been already

mentioned, it represents the local outdoor temperature. The second one is a so called

”equitherm outdoor temperature”. This series represents a 3-hour forecasts obtained

from the meteorological station, adjusted for a difference between the local temperature

and provided forecast, observed in past. This technique is currently used as a simple

forecasting method and its forecasting performance will serve as a benchmark value for

development of more complex forecasting models. The values of ”equitherm outdoor

temperature” series will be used for backward computation of pure meteorological fore-

cast, that will be further used as an external factor for extension of the forecasting

models, in order to improve the forecasting performance.

The structure of the section is as follows. At the beginning, data analysis will be

performed and data will be preprocessed in order to guarantee their stationarity. After-

wards, forecasting methods, that have been tested on the public data set, will be used

to create forecasting models without external factors. In further steps, the models will

be extended in order to increase forecasting performance.

45
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5.1 Data analysis and preprocessing

Data set represents local outdoor temperatures in degrees Celsius during the period

from 20.12.2015 to 30.4.2016. Records are made at ten minute intervals, producing

19146 values in total. The Figure 5.1 demonstrates the graph of raw data.
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Figure 5.1: Plot of the local outdoor temperature data (in degree Celsius)

Figure 5.2 demonstrates the plot of ACF of raw data. Very slow decrease of ACF tells

about the obvious evidence of time series non-stationarity. Additionally, the ADF test

has been performed. The p-value of the test is equal to 0.1136 , what is greater than

0.05. This means, that the null-hypothesis of the test can be rejected and the assumption

about time series non-stationarity is confirmed.
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Figure 5.2: ACF plot of the local outdoor temperature data

The non-stationarity of the series can be easily explained. It’s seasonality component

reflects the daily temperature fluctuations and the trend is a consequence of temperature

changes among the year. In order to stationarize the series, the following preprocessing

transformations have been performed. Firstly, the simple non-seasonal differencing is

used, this allows to remove the trend. The plot of ACF after one non-seasonal differ-

encing is demonstrated in the Figure 5.3.
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Figure 5.3: ACF plot of the local outdoor temperature data after one non-seasonal
differencing

Now, the ACF decreases much faster, but still there can be observed patterns repeating

after every 144 values, this corresponds to the 24 hour periods. Simple differencing didn’t
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manage to remove the seasonality component. Therefore, the seasonal differencing with

lag = 144 should be also used [15].

The last data preprocessing step is detection of the outliers. In the plot of differenced

data there still can be observed some sharp and suspicious peaks. Data outliers don’t

describe the typical series behavior and their presence in the training sets is not rec-

ommended. For this purposes the Hampel filter has been used [5]. This is one of the

modifications of the median filter, which is used to check the values, and replace them if

they lie far enough from the median, but this filter should be used only on the training

data. The plot of preprocessed data after all transformations is demonstrated in Figure

5.4.
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Figure 5.4: The plot of preprocessed local outdoor temperature data

Finally, the ADF test has been used again to confirm the stationarity of the preprocessed

data. The p-values of the test is far less then the critical value 0.05 and assumption

about time series stationarity is confirmed. The last data preparation step is division of

the time series data into the training data 85% and testing data 15%.

5.2 Autoregressive-Moving-average method

Data analysis demonstrated the clear presence of the seasonal component in the data

set, what causes the necessity of one seasonal and one non-seasonal differencing. This

suggests the use of SARIMA(p, d, q)× (P,D,Q) model, where both differencing param-

eters d and D are equal to 1. Basically, the SARIMA model is just an extended version
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of ARIMA model, with the ability to deal with the seasonal data. Now, the plots of ACF

and PACF of the propcesssed data should be analyzed, to make an initial suggestions

about the rest of the parameters of the given model.
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Figure 5.5: ACF plot of preprocessed local outdoor temperature data
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Figure 5.6: PACF plot of preprocessed local outdoor temperature data

Plot of ACF (Figure 5.5) tails off after the lag 15 and the plot of PACF (Figure 5.6) tails

off after the lag 21. According to the known rules [16], this suggests, that autoregressive

parameter p has to be tested up to 21 and moving average parameter q has to be tested

up to 15. The seasonal parameters of the model should be selected according to the

correlation value for the first periodic lag. In this case, correlation value is negative, and



Main experiments 50

according to the referenced rules [16], this considers the use of seasonal moving average

component.

To select the optimal SARIMA model, the MSE criterion has been used. Experi-

mentally, it has been tested, that SARIMA(9, 1, 5) × (0, 1, 1) model performs better

than other models, its corresponding MAPE measure is 6.25% for 1-hour forecast hori-

zon. Due to the overfitting, further increasing of the parameters was pointless and

didn’t lead to improvement of performance. Table 5.1 demonstrates the effectiveness of

SARIMA(9, 1, 5)× (0, 1, 1) model for different forecast horizons.

MAPE RMSE

1-hour ahead forecasts 6.25% 1.31

2-hour ahead forecasts 10.39% 3.15

3-hour ahead forecasts 14.21% 5.41

Table 5.1: Forecasting performance of SARIMA(9, 1, 5)× (0, 1, 1) model for different
forecast horizons.

5.2.1 Forecasting with external factors

In this section, already known SARIMA(9, 1, 5) model will be extended by the effect of

external factors. This kind of models is usually denoted as SARIMAX, where the “X”

letter stands for the external factor.[18]

Figure 5.7 demonstrates the plots of values forecasted by ARIMAX(9, 1, 5) × (0, 1, 1)

model with 1-hour forecast horizon and actual values. The plots are demonstrated for

three days period of the test data.
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Figure 5.7: The plots of one hour ahead forecasted values (blue) and actual values
(red) of the test data set.

Table 5.2 demonstrates the effectiveness of SARIMAX(9, 1, 5)× (0, 1, 1) model for dif-

ferent forecast horizons.

MAPE RMSE

1-hour ahead forecasts 4.70% 0.79

2-hour ahead forecasts 7.69% 1.87

3-hour ahead forecasts 11.04% 3.50

Table 5.2: Forecasting performance of SARIMAX(9, 1, 5)× (0, 1, 1) model for differ-
ent forecast horizons.

5.3 Exponential smoothing method

In this section, double exponential smoothing, also refereed as Holt-Winters method, will

be used for time series forecasting. As it was described in the theoretical part of thesis,

exponential smoothing is relatively simple but powerful tool. The main disadvantage of

the given method is, that it can’t take into account the effect of the external factors.

Estimation of the forecasting model is basically the process of selecting the optimal

Alpha and Beta parameters, such that the RMSE error on the training set is minimal.

For the given time series of the local outdoor temperature the following parameters

Alpha = 0.995 and Beta = 0.01 demonstrated the lowest RMSE error on the training

data.
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Figure 5.8 demonstrates the plots of values forecasted by double exponential smoothing

model with 1-hour forecast horizon and actual values. The plots are demonstrated for

three days period of the test data.
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Figure 5.8: The plots of one hour ahead forecasted values (blue) and actual values
(red) of the test data set.

Table 5.3 demonstrates the effectiveness of double exponential smoothing model for

different forecast horizons.

MAPE RMSE

1-hour ahead forecasts 8.30% 1.78

2-hour ahead forecasts 15.85% 4.81

3-hour ahead forecasts 23.69% 8.78

Table 5.3: Forecasting performance of double exponential smoothing model for dif-
ferent forecast horizons.

5.4 Artificial neural networks method

In this thesis, all experiments with the neural networks will be performed in Python

programming language using the Keras library and Theano backend. Keras library

provides wide offer of different layers, training algorithms and other useful tools for deep

learning tasks. For the purposes of this thesis, it was decided to use the LSTM networks,

which belong to the class of recurrent neural networks. According to the numerous

researches, LSTM networks and RNNs in general are a good choice for sequential tasks,
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like speech recognition, handwriting recognition and time series forecasting as well, where

each new output of the network is dependent on its previous outputs.

The whole complexity of the experiments with ANNs is based in tuning of the hyper-

parameters of the network. There should be selected parameters like number of layers,

number neurons in the layers, type of activation functions, the batch size and many oth-

ers. This task is especially hard, when the neural network is used for some new problem.

Sometimes, it may seem, that neural networks can not deal with the given problem, but

usually it is because of the incorrectly selected parameters. For the smaller networks

the grid search technique can be successfully used for parameters selection, but with the

increasing number of layers the number of combinations to be tested is exponentially

increased, what results in a very long lasting process, especially when training data set

contains large number of instances. Therefore, different heuristic techniques are used.

One of them is described in book [9] and will be used in the experiments of this thesis.

Its general idea is based on the following steps:

• reduce the training set in order to speed up experimentation

• find some initial architechture, that will demonstrate at least trivial learning

progress

• adjust the parameters to improve the performance on the validation set

• return to the initial training set and perform final optimizations

5.4.1 Forecasting without external factors

At this moment it is considered, that time series data, have passed all necessary pre-

processing steps, described in section 5.1. Additionally, it is highly recommended to

perform data scaling, before they are applied to neural networks. The required range of

scaling usually depends on the activation function used in the first layer of the network.

In this case, hyperbolic tangent function is going to be used in the first LSTM layer and

(−1; 1) scaling range is selected.

For the purposes of this experiment, it was decided to use the neural networks with

multiple hidden LSTM layers and the feedforward output layer. Hyperbolic tangent

activation function has been used for hidden LSTM layers and linear activation function

has been used for output feedforward layer. Different training algorithms have been

tested and finally the RMSProp training algorithm with learning rate Alpha = 0.0005

and batch size equal to 5 has been selected, as it demonstrated the most stable training
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ability for the given problem. The cross validation technique has been used to prevent

the overfitting and stop the training process.

The inputs to the network are presented as the vectors with 60 timesteps, what corre-

sponds to historical values for the last 10 hours. The number of hidden layers and the

corresponding number of neurons has been experimentally adjusted. Two hidden LSTM

layers with the corresponding number of neurons 200 and 50 demonstrated the lowest

forecast error. The given forecasting model has been tested for three different forecast

horizons: 6, 12 and 18 steps ahead, what corresponds to the forecasting of temperature

values for 1, 2 and 3 hours ahead. Figure 5.9 demonstrates the diagram of the previously

described network.

Figure 5.9: Diagram of ANN used in this experiment. It demonstrates structure of
network, number of neurons, activation functions and dropout regularization parame-

ters of individual layers.

Table 5.4 demonstrates the effectiveness of ANN model for different forecast horizons.

MAPE RMSE

1-hour ahead forecasts 3.84% 0.55

2-hour ahead forecasts 6.98% 1.58

3-hour ahead forecasts 12.32% 4.23

Table 5.4: Forecasting performance of ANN model for different forecast horizons.

5.5 Forecasting with external factors

In this task it is necessary to forecast the local outdoor temperature. It is generally

known, that forecasting of the meteorological time series belong to the hard tasks. The

problem is, that pure mathematical forecasting of the temperature doesn’t lead to the

qualitative results for longer forecast horizons. Therefore, the ANN forecasting model

from the previous section will be extended by adding an external factors. In this case, the
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meteorological forecast from the nearest meteorological station will be used. It is sure,

that meteorological forecast and real local outdoor temperatures will differ at many

cases, because the local outdoor temperature is affected by many other local factors,

that aren’t taken into account by meteorological forecast, but nevertheless the general

tendencies will remain the same.

The initial LSTM network, presented in the previous section will be extended by adding

another input vector, containing the meteorological 3-hour forecast values. It is also nec-

essary to mention, that external factor time series should undergo similar preprocessing

steps as the original time series, in order to keep the same scale of input data.

Now, after the new input vector has been added, it is also necessary to tune again the

hyper-parameters of the network. Parameters like training algorithm, learning rate and

batch size remained unchanged, but the number of neurons in the network should be

increased, as the total amount of information fed to the neural network is now larger.

The number of neurons in LSTM hidden layers has been experimentally selected to be

250 in the first hidden layer and 75 in the second hidden layer. Figure 5.10 demonstrates

the diagram of the previously described network.

Figure 5.10: Diagram of ANN used in this experiment. It demonstrates structure of
network, number of neurons, activation functions and dropout regularization parame-

ters of individual layers.

Figure 5.11 demonstrates the plots of values forecasted by ANN model with external

factor for 1-hour forecast horizon and actual values. The plots are demonstrated for

three days period of the test data.



Main experiments 56

0 50 100 150 200 250 300 350 400 450

Time

6

8

10

12

14

16

18

20

22

T
em

pe
ra

tu
re

 [d
eg

re
e 

C
el

si
us

]

Forecasted values
Actual values

Figure 5.11: The plots of one hour ahead forecasted values (blue) and actual values
(red) of the test data set.

Table 5.5 demonstrates the effectiveness of ANN model for different forecast horizons,

after adding an external factor.

MAPE RMSE

1-hour ahead forecasts 2.91% 0.33

2-hour ahead forecasts 5.49% 1.04

3-hour ahead forecasts 7.01% 1.61

Table 5.5: Forecasting performance of ANN model for different forecast horizons,
after adding an external factor

5.6 Data set extension

One of the main problems that may occur in training of neural networks is overfitting.

Especially, the larger networks with multiple hidden layers are prone to this. There are

more options how to deal with this problem. The most intuitive and useful one is to

extended the training data set by adding new training data. The problem is that in

many cases there are no more data available to be added. In this case, sometimes it is

possible to artificially generate new data. This highly depends on task definition and

the format of input data.

In this experiment, the training data used in the previous sections will be artificially

extended in order to improve the forecasting performance of the trained model. New



Main experiments 57

training data will be generated by a slight modification of the original data. The main

principle is to add slight randomly generated noise signal to the original time series and

merge the result with original training set. In many cases, this action may help the

network to learn the dependencies in more general way and prevent the network from

overfitting. The more detailed information about this technique, has been described in

the following book [9].
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Figure 5.12: Example of artificially generated time series data

The ANN model, that has been selected in the previous section has been retrained

after the artificial extension of the training set. The performance has been only slightly

increased, now the MAPE error is equal to 2.85% for 1-hour forecast horizon, 5.33 for

2-hour forecast horizon and 6.92 for 3-hour forecast horizon. In this specific case, the

improvement is not so significant. But nevertheless, it is still an improvement, and

sometimes, if it comes to financial issues, even a small improvement may be important.

5.7 Experiments summary

The main goal of the experiments in this chapter was to perform the analysis of temper-

ature data and find the optimal forecasting model, that can be further integrated into

the other applications. Three different forecasting methods have been used for this task.
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At the beginning, analysis of the time series has been performed. It demonstrated the

obvious signs of non-stationarity with the clear evidence of trend and seasonality com-

ponents. The non-stationarity has been confirmed by statistical ADF test. Afterwards,

the following preprocessing steps have been required in order to stationarize the series:

• one non-seasonal differencing

• one seasonal differencing with 24-hours lag

• Hampel filter with window size k = 7

• data scaling to (−1; 1) range (required only for ANN experiments)

The first methods, that have been applied, belong to the class of Autoregressive-Moving-

average methods. Performed data analysis helped to make initial suggestion for the

proper parameters of the model. In order to select the optimal model, the RMSE mea-

sures of individual models have been compared. In the first step, the SARIMA(9, 1, 5)x(0, 1, 1)

model without external factors has been developed. Afterwards, in order to improve the

forecast performance the model has been extended by adding the external factors.

The second method was double exponential smoothing, also known as Holt-Winters

method. The forecasting method and all additional functions have been completely

developed in MATLAB programming environment. The proper parameters of the model

have been experimentally selected. The model provides only the ability of time series

forecasting without external factors.

The last methods, that have been applied, belong to the class of ANN methods. For

the purposes of experiments, the LSTM networks with multiple hidden layers have been

used. At first, the model without external factor has been developed. Afterwards, the

model has been extended by adding the external factor.

Results demonstrated that forecasting models with external factors are able to make

more accurate predictions of local outdoor temperature, that could be intuitively ex-

pected. Especially the ANN demonstrated remarkable results. This corresponds to

their ability to find out more complex non-linear dependencies in data.

Generally, forecasting of the meteorological indicators belongs to the hardest predictable

time series. It is known, that this kind of series can be adequately predicted by the

mathematical models only for short forecast horizons. Forecasting for longer periods

is pointless. In this cases, there are used more physically oriented techniques at the

meteorological stations.



Main experiments 59

The models without external factors can find-out only the mathematical dependencies

between historical and future values of the local outdoor temperature, while the main

success of models with external factor is based in their additional ability to find-out the

proper correlations between local outdoor temperature and meteorological forecasts. In

other words, the models with external factors, in some way adjust the meteorological

forecast in such way, that they take into account some local factors, which couldn’t be

reflected in meteorological forecast.

The ANN forecasting model with the external factor presented the best results, with the

MAPE rate equal to 2.91%. The MAPE rate is very popular and informative criterion,

when it is necessary to compare the performance of different models and select the better

one, but in general, it doesn’t express information, whether the model is good or not.

The MAPE rate that is good for one series, it doesn’t have to be good for other series.

In order to decide, whether the model is good or not, the errors should be analyzed a

little bit differently.

If the error’s plot represents a stationary time series with the constant zero mean, then

the model can be considered to be qualitative, and its further improvement is not nec-

essary.
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Figure 5.13: The plot of forecasting errors calculated on the test data set by the ANN
forecasting model with the external factor.

Figure 5.13 demonstrates the plot errors calculated on the test data set by the ANN

forecasting model with the external factor. The plot seems to represent the stationary

series. This is also confirmed by the plot of ACF for the error vector (Figure 5.14). The

ACF drops to zero relatively quickly.
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Figure 5.14: The plot of forecasting errors calculated on the test data set by the ANN
forecasting model with the external factor.



Chapter 6

Conclusion

The main issues of this thesis have been to perform the analysis of provided data and

to develop the qualitative forecasting models for them. In order to solve this, the theo-

retical part of the thesis has been devoted to the survey of the time series problematic,

forecasting methods, data preprocessing and other important aspects of time series anal-

ysis. It was investigated, that very often, the proper data preprocessing plays the key

role of the whole process.

In the practical part of the thesis, there have been selected three perspective forecasting

methods. Their effectiveness has been demonstratively tested on the internet traffic

data set, that is publicly available in the internet. Individual forecasting methods, as

well as the time series analysis methods, have proven themselves in the experiments, by

demonstration of the remarkable results. After that, these methods could be confidently

used for solving the main task of the thesis.

The main task of the thesis is related to the forecasting of the local outdoor temper-

ature of individual buildings. Development of the qualitative forecasting models for

the temperature values represents a real practical task and plays an important role for

their further integration into the other applications. Forecasting performance of the so

called “basic forecasting method”, that simply adjusts the meteorological forecast and

is currently used, has served as the benchmark values for the newly developed models.

Initially, for the temperature forecasting, there have been used traditional forecasting

methods without adding external factors. Afterwards, the models, that make it possible,

have been extended by adding an external factor. The meteorological 3-hour forecast

values have served as the external factor. All forecasting methods demonstrated rela-

tively good results, and better than the referenced benchmark value. But the models on

the base of ANN significantly outperformed any other models, especially the ANN model

61
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with taking into account the external factor. Therefore, they are the most recommended

models for the future integration into the other applications.

After the ANN models are already trained, the API of Keras library allows to store the

weights and other parameters of network into the text file, and restore it later, in the

target application. With a little bit more effort, the forecasting model can be restored

to some other ANN libraries.

If the accuracy of the forecast is not such an important criterion, then the other methods

can be safely used. For example, all double exponential smoothing models are defined

only by two parameters, what makes it easy to integrate them, but nevertheless they

still demonstrated relatively good forecasting performance, what could be observed in

the experiments.

6.1 Discussion about further improvements

One of the possible and the most intuitive improvement is related to the idea of combin-

ing together several forecasting models. This technique is usually denoted as “Consensus

forecast”, and it is known for being used in fields like econometrics or meteorology. Gen-

erally, combining of the forecasts isn’t quite new technique, and for example taking the

mean average of the forecasts from different sources, in order to improve the confidence,

is being used for a long time. Today, some more sophisticated techniques are being

used. The general idea, is to find a linear combination of forecasted values from differ-

ent models such, that the overall forecasting error will be minimal. For this purpose, it is

necessary to construct a proper optimization problem and solve it. The linear program-

ming method can be suitably used for these tasks. The following publication describes

the given problematic in more detail [19].

Another option, how to improve the forecasting performance is based on the absolutely

different approach. The main idea is, that the training data may contain some sequences,

that don’t represent a typical time series behavior, and their presence in the training

set contributes to the incorrect estimation of the model, what results into decreasing of

the final forecasting performance. This problematic is know as the “anomaly detection”

and the following publication may be studied for more details [20]. The general idea is

to remove the anomalies from the training data and make them more reliable.
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